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AFtSTRACT 

Suppose that l < p - < 2 ,  2 _ < q < ~ .  The formal identity operator l : l p ~ l q  
factorizes through any given non-compact operator from a p-smooth Banach 
space into a q-convex Banach space. It follows that if X is a 2-convex space and 
Y is an infinite dimensional subspace of X which is isomorphic to a Hilbert 
space, then Y contains an isomorphic copy of I ~ which is complemented in X, 

1. Basic sequences and non-compact operators 

The existence of a basic sequence which bears a special relation to a given 

finite collection of non-compact operators is proved in Proposition 1.3 below. 

This is applied to obtain some results about the existence of quasi-complements 

and to obtain an extension of a theorem on the existence of a universal 

non-compact operator;  the latter result provides the motivation for the theorems 

described in the abstract, which are proved in Section 2. 

Suppose that T is a bounded operator from a Banach space X into a Banach 

space Y. The quantity c ( T ) i s  defined by c(T)=inf{[[T[Mll:M is a closed 

subspace of finite codimension in X}. It is proved in [7] and [15] that T is a 

compact operator if and only if c (T) = 0. For completeness a simple proof of this 

fact witl now be given. 

PROPOSITION 1.1. T is compact if and only if c (T)  = O. 

PROOF. First suppose that c ( T ) > 6 > 0 .  We shall construct a sequence 

(xk)~l in the unit ball of X such that [[ Txk [[ > 6 and [[ Txj - Txk [] > 6 for all k ~ j. 
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Suppose that x, . . . . .  x. have been constructed with these propert ies  for  all 

1 -< j < k =< n. Select f, . . . . .  f,, in Y* such that f,(Tx,) > fi and I1~ II ~ 1. Then  

M = O',' , ker(T*f~) is of finite codimension in X, and so there exists x,,+l in M 

with IIx°+,ll~ 1 and IITxo+,l[> S. Moreover, IlYxo,,- Tx, ll>=F,(Tx,- Tx,,+,)> 
( 1 - < i =  < n), which proves the next step in the induction. Since the sequence 

(Tx,)~ ~ has no convergent  subsequence,  it follows that T is non-compact .  To  

prove the converse assertion we shall assume that c ( T ) =  0 and show that T is 

then compact .  To  this end le:I (x,)]-:, be any sequence in the unit ball of X and let 

e > 0 be given. There  exists a closed subspace M of finite codimension with 

IIT ]M]] < s ; let N be any (finite dimensional)  complement  of M and let P be the 

project ion which is parallel to M and whose range is N. There  exists a 

subsequence (x°~)~ , such that IIPx,,- Px,,~ 11< s for all j J  k. We have 

[[(I-P)Kx, , , -  x,,~)ll-< Ilx,,,-x,,, [[ + II Px,,,- px,,~ 1l_-<2+ E, 

and so 

][ T(x, , ,-x, ,k)][<=l]Tll]]P(x~,-  x.k)ll + IIT ]MII I1(I- P ) ( x , , -  x,k)ll 

~ l] T:Ie + s ( 2 +  e). 

Since e is arbi t rary it fol lo~s easily that (Tx.)? has a convergent  subsequence,  

and so T is compact .  

LEMMA 1.2. Suppose thai T~ : X ~ Y~ (l <= i <= n) are non-compact operators. 

There exists 6 > 0 such that for every closed subspace M of finite codimension in X 

there exists x ~ M with IIx II--< 1 and II T~x II > (5 (1 =< i =< n). 

PROOF. Thereexis ts~l>t)  s u c h t h a t c ( T ~ ) > ~ l ( l < = i < n ) . W e s h a l l s h o w b y  
induction that we may take ~ = -r//2L Suppose the result is true for n - 1. There  

exists y E M with Ilyll -< _ 1 and I I~y l [>  n/2" ' (l _< i _-< n - 1). If IlToy [I > n/2", 
then we are done.  The  o ther  possibility is that ]] T,,y ]] <=-q/2L In this ease we 

choose norm one functionals ff,)i' ,' such that f~(T,y)>,l /2 ~-'. Since L = 

M N f'l'~' ,' ker(T'~f~)is of finite codimension there exists z E L such that II ~ II--< l 

and ]]T.zll >7/- Let  x = ~ _ , ( y + z )  and observe that x E M  and ]]x]]=<l. For  

l = < i = < n - l ,  w e h a v e  

Moreover ,  

[IT, xII~ ~F,(T,y + T,z)> ~/2". 

II T.x II ~ ~11T.z II- +11T.y II > (~ - (~Y)n ~ (~)"n, 

provided n => 2. This completes  the induction.  
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PROPOSITION 1.3. Suppose that T, : X--> Y~ are non-compact operators. There 

exists 6 > 0 and a normalized basic sequence (x~ )~=l in X such that II r,x  II > 
(1 _--< i _-< n, k _-> t) and (T~xk)~=1 is a basic sequence in Y~ (1 <= i <= n). Moreover, 

given K > 1, we may ensure that the basis constant of each of these basic sequences 

is at most K. 

PROOF. Let 6 > 0 be as given by the statement of Lemma 1.2. The proof is an 

adaptation of Mazur's argument for the construction of a basic sequence in an 

infinite dimensional Banach space (see e.g. [10, p. 4]). Let (ej)~=l be a sequence of 

positive numbers satisfying 1I~(1+ ei) = K < o0. Suppose that x~ . . . . .  xk have 

been obtained such that for all choices of scalars A~,...,Ak the following 

statements are true: 

(a) l[ E~=, A,xj II --< II~ (I + e,)[[ E;=, A,x, II (~ --< r _-< s _-< k); 
(b) [[E;=I A,T~x, [[ ~ I-[~ (i + e,)[[E;=1 A,T~x, I[ (i ~r ~ s == k, I =< i ~ n). 

Let E and F~ (1=<i= < n) denote the subspaces spanned by x~ . . . . .  x~ and 

T~x, . . . . .  T~xk respectively, and let w~,.. . ,  wp and z~,. . .  ,z~q, be (~)ek+:nets of the 

unit spheres of E and F~ respectively. Now select fi E X* (1 _-< r =<p) and 

g',E Y* (1=< r_-<q,, l<=i<-_n) such that f , (w,)=l l f , ]]=l  and g~(z~)=]lg',]]=l; 
let 

M = {x @ X : f i ( x ) =  T*g~,(x)=0:l<= r <=p, 1<= i <= n, 1<= s <= q~}. 

Then M is of finite codimension and so by our choice of 6 there exists xk+~ in M 

with Ilxk+,]l= 1 and ][T~xk+,]]> 3 ( l ~ i = < n ) .  Suppose that y lies on the unit 

sphere of E ;  there exists a w, such that for each scalar A, we have 

II y + ~x~+, II--> II w, + ~x~, II-' Ek+I 

>= f ,(w, + ,~x~ + 3 -  ~ ek+, 

- - ~ E k 4  L 

_>- 1/(1 + ek+~). 

It follows that (a) holds with k replaced by k + 1, and a similar verification shows 

that (b) holds with k replaced by k + 1, which completes the induction. The 

estimate for the basis constants is immediate. 

COROLLARY 1.4. (a) Suppose that T~ "X--> Y~ are non-compact operators 

(1 <= i <= n ). There exists an infinite dimensional closed subspace N of X such that 

the restriction of each T~ to N is non-compact and injective. 

(b) Suppose that XI . . . . .  X ,  are closed subspaces of infinite codimension in the 



18 S.J. DILWORTH Isr. J. Math. 

Banach space X. There exists a closed subspace N of X such that the restriction to 

N of the quotient map X - ~  X,'Xi is non-compact and injective for each 1 ~ i ~ n. 

PROOF. (a) Let (xk)~=~ be a basic sequence whose existence is asserted in the 

statement of Proposition 1.3, and let N be the closed linear span of this 

sequence. The result follows at once from the properties of this sequence which 

are stated in Proposition 1.3. 

(b) This follows from part (a) by taking T, to be the quotient mapping 

X ~ X/Xi .  

Let M and N be dosed subspaces of a Banach space X. We recall that N is 

said to be a quasi-complement of M if M D N : 0 and M + N is dense in X. It is 

proved in [11] that every subspace of a separable Banach space possesses a 

quasi-complement, while it is proved in [9] that if F is uncountable then c0(F) 

does not possess a quasi-complement in L(F). Now suppose that X is a separable 

infinite dimensional Banach :~pace which does not contain I~ and that T: ll--~ X is 

a quotient mapping. Since any infinite dimensional subspace of l~ contains ll it 

must follow that if ker T C N C l~, where N is a closed subspace, and that if ker T 

is complemented in N, then N/ker  T is finite dimensional. The above remarks 

are relevant to the following proposition, which translates Corollary 1.4 (b) into 

a statement about quasi-complements. 

COROLLARY 1.5. Suppose that X~ . . . . .  X ,  are closed subspaces of infinite 

codimension in the Banach space X. There exists a subspace N of X such that N is 

a quasi-complement of Xi in the closure of N + X~ such that the restriction to N of 

the quotient map X - ~  X/X~ is non-compact for each 1 <= i <~ n. 

It was proved in [5] that 1:he formal identity operator I : l~--~ L is a universal 

non-compact operator in the sense that it can be factorized through any given 

non-compact operator. The next proposition shows that it is possible to obtain 

simultaneous factorizations through any finite collection of non-compact 

operators. 

COROLLARY 1.6. Suppose that T~ : X - ~  Y~ (1 < i <-_ n) are non-compact 

operators. There exist operato,rs U : l~--* X and V~ : Y~ -o l~ (1 <- i <= n) together with 

the following factorizations of the formal identity I : l~-~ L : 

lI  U T V >X '~Y~ ' > L  (l=~i--<n). 

Moreover, given K > I ,  we may ensure that I JuJ l< l  and IIV, l l<2K/~ 

(1 <= i <= n), where 6 > 0  is as defined in Proposition 1.3. 
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PROOF. Let (xk)~:, be a basic sequence whose existence is asserted in the 

statement of Proposition 1.3; let U be defined by U(ek) = Xk, where (ek)k-~ is the 

unit vector basis of lp (l___<p =< oo), with extension to 1~ by linearity. Since 

(T~xk)~=l is a basic sequence for each 1 =<iN n, it follows that the mapping 

T~xk ~ ek (k => 1) extends to a bounded operator from the closed linear span of 

(T~xk)~:, into l~; but L is a ~ space and so the latter operator has a bounded 

extension V~ : Y~ ~ 1~. The estimates for HUII and I1 V~ II are easily verified. 

We now prove a dual version of the previous result. It should be noted that 

estimates could easily be given for the norms of the operators appearing in the 

statement. 

COROLLARY 1.7. Suppose that T~ : X~ -~ Y are non-compact operators (1 =< i 

n ). There exist operators U~ : l~-->X~ and V:  Y-~l® together with the following 

factorizations of the formal identity I : l~ -~ L: 

1, U',X~ r , , y  v l ~ (l=<i=<n).  

PROOF. We shall sketch the proof only in the case n = 2 as the extension to 

the general case is then a matter of routine. The argument of Proposition 1.3 can 

be modified to show that there exist 3 > 0 and normalized sequences (xk)~=l in 

XI and (yk)~=l in X2 such that (Zk)~=l, which is defined by z~ = T,x~ and 

z2k+, = T2yk (k _-> 1), is a basic sequence in Y with IIz ll> 3. We define 

U~ : l,--~ X1 and U2: l~ ~ X2 by U,(ek ) = xk and U~_(e~) = y~ with extension to l~ 

by linearity. It follows easily from the fact that (zk)~=, is basic that the mapping 

given by z2k ~ ek and z 2 k - ~  e~ (k -> 1) extends to a bounded operator from the 

closed linear span of (zk)~ 1 into L. Since L is a ~ space the latter operator has 

a bounded extension V: Y---~ L, and this completes the proof. 

We end this section with the remark that the case n = 1 of Proposition 1.3 will 

follow very simply from a result of A. Pe~'czyfiski ([13]) to the effect that every 

bounded sequence which has no weakly convergent subsequence contains a 

basic subsequence. The latter result gives rise in a straightforward manner to the 

following analogue of Corollary 1.4 and Corollary 1.5 for non-weakly compact 

operators in the case n = 1. 

PROPOSITION 1.8. (a) Suppose that T :X- - -~Y  is a non-weakly compact 

operator. There exists an infinite dimensional closed subspace N of X such that the 

restriction of T to N is non-weakly compact and injective. 

(b) Suppose that Xt is a closed reflexive subspace of the non-reflexive Banach 
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space X. There exists a subspace N of X such that N is a quasi-complement of X1 

in the closure of N + X1 and such that that the restriction to N of the quotient map 
X---~ X/XI  is non-weakly compact. 

It is unknown to me, however, whether the non-weakly compact analogue of 

Corollary 1.4 is true for general values of n. 

2. Universal non-compact operators between super-reflexive spaces 

The modulus of convexity ~x of the Banach space X is defined by 

8,~(e) = inf{1 -]]½(x + y)ll:llx II--< 1, Ily II--- 1, II x - y II--> e} 

for 0 =< e =< 2; its modulus of smoothness px is defined by 

px(t) = sup{½([[x + ty P[[+ Ilx - ty II)- l:[[x 11 = [[Y II = 1} 

for 0=< t_-<o~. 

X is said to be q-convex (2 =< q < ~) if there exist a constant C > 0 and an 

equivalent norm on X for which the modulus of convexity 8 satisfies 8 (e)>~ Ce q 

(0 =< e -< 2). X is said to be p-smooth (1 < p _-< 2) if there exist a constant C and 

an equivalent norm on X for which the modulus of smoothness p satisfies 

p(t) <= 0 ~. X is said to be uniformly convex if 6x(e) > 0 for e > 0. The moduli of 

convexity and smoothness of a Banach space and its dual are related by the 
following duality formulae of J. Lindenstrauss ([8]): 

px(t) =: sup { te /2-6x . (e)}  (t >0) ;  
O < t ~ 2  

6x.(e)>_sup{te/2-p×(t)} (0< e _-<2). 
t>O 

These duality formulae have the consequence, which is used below, that X is 

q-convex if and only if X* is p-smooth (t/p + 1/q = 1). Finally, let us recall a 

deep theorem of G. Pisier ([16]) to the effect that every so-called super-reflexive 

Banach space (see [4] for some characterizations of super-reflexivity) is both 

q-convex and p-smooth for some q and p. It was proved earlier by P. Enflo ([3]) 

that every super-reflexive Banach space admits a uniformly convex norm. 

The modulus of convexity of the sequence space L is of power type 

q = max(2,r) and its modulus of smoothness is of power type p = min(2,r). 

Moreover, lr is neither q'-convex nor p'-smooth for any q ' <  q or p ' > p .  

Suppose now that 1 <p_-'~2 and that 2_- < q < ~ ;  then the formal identity 

operator I : lp ~ lq is bounded and non-compact. The purpose of this article is to 
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prove the following theorem, which asserts that the latter operator is a universal 

non-compact operator from a p-smooth Banach space into a q-convex space. 

THEOREM 2.1. Suppose that X is p-smooth,  that Y is q-convex, and that 

T : X---~ Y is non-compact.  There exist operators U : l e ~ X and V : Y--~ lq together 

with the following factorization of  the formal identity 1 : lp ~ lq : 

u T V 

lp ' X > Y > lq. 

It should be noted that in this theorem and in the other factorization theorems 

of this section it would be possible to give estimates for the norms of the relevant 

operators. The proof of Theorem 2.1 will follow from some facts about basic 

sequences in uniformly convex spaces. We need to introduce some notation for 

the purpose of stating the next two propositions. Let (xk)~ ~ be a basic sequence 

in the Banach space X, and let P, be the natural projection associated with this 

sequence which is defined on the closed linear span of (xk)~ 1 and whose range is 

the linear span of Xl,... ,x n . Let K, = liP. II and let S. = E~=, xk (n _-> 1). The 
proof of the following proposition is adapted from a similar result for monotone 

basic sequences which was proved in [16]. 

PROPOSITION 2.2. Suppose that sup,>~ Ko[[ S,+1 [[ --< 1. Then 

Ilx, ll+ ~ ~(llx. II)- -< l~I Kj + ~ (1-  1/K~). 
n = 2  1 j = l  

i.e. 

PROOF. Since IIs.ll~ K.IIS~+,II, we have 

1 s ° + s ° .  , [ ttx.+,ll ); 

KoppS.+,II. 

Because K. Jl S.+, ii --< 1 and because e ---> 3x (e)/e is increasing on [0,2) (see [16]) 

we obtain 

= 6 { iix°+,ii \ 
6×(llx.+,ll) < K.IHS.+,[I x \  K.IIS.+,II ] . 

Combining the latter with the relation II & II --< K. II S. + i x°+, II gives 

It s° ii + ~x (li x.+, II) ~ Ko ff S.+~ il, 
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and so 

~s~. (11 x,.,÷, II) ~ (K,, ]] s~÷, il - II s,. I1) ÷ II s,~ I] (~ - 1/K,~) 

Summing from n = 1 gives 

~x(ll x. II)_- < ( I~ K, )sup II s.  ,I-II xl II+ ( ~  ( 1 - 1 / K j ) ) s u p  II s.  I[. 

and the result follows. 

The Lindenstrauss duality formulae can be used to prove the following dual 

analogue of Proposition 2.2. whose proof is omitted. 

PROPOSITION 2.3. Suppose that 1-ITKj < oo and lhat ~:=,0x(llxn II)-- -< 1. There 

exists a constant C (depending only on the Kj 's)  such that sup, II Sn 11 = c. 

We shall now suppose that (x,)~=] is a normalized basic sequence, that 

1 < p =< 2, and that 2 < q < ~. This sequence will be said to satisfy an upper 
p-estimate if there exists a constant A such that liE; A,x, II -<- A (E~[ A, ]")"P for all 
choices of scalars A1, A2 . . . . .  ;and will be said to satisfy a lower q-estimate if there 

exist a constant A > 0 such that IIE~A,x, II = A (E~ IA. I") TM for all choices of 
scalars. Finally, (x,)~-i will be said to be a sufficiently monotone basic sequence 
if (in the notation above) 1-I] ~ K, < 2. The following proposition is an immediate 
consequence of the last two results. 

PROPOSITION 2.4. Suppose that (x.)~=~ is a sufficiently monotone normalized 

basic sequence in the Banach space X. 

(a) I f  X is p-smooth then (x,):=~ satisfies an upper p-estimate. 

(b) I f  X is q-convex then (x,):=~ satisfies a lower q-estimate. 

It is indeed fortunate that there is an abundant supply of sufficiently monotone 

basic sequences, and the following proposition records this fact. The proof is 
implicit in the well-known Mazur technique for extracting a basic subsequence 
from a weakly null sequence (se e.g. [2, p. 42]). 

PROPOSITION 2.5. Suppose that (x.)~=l is a weakly null normalized sequence in 

a Banach space. Then (x,)~=~ contains a sufficiently monotone basic subsequence. 

PROOF OF THEOREM 2.1. 13y Proposition 1.3 there exists 6 > 0 and a normal- 

ized basic sequence (x.)7=~ such that (Tx,)~=~ is a basic sequence with II Tx. II > 8. 
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Since X is reflexive it follows that (x,)~=, is weakly null, and so by Proposition 

2.5 we may assume that (x,)~=, is sufficiently monotone (after extracting a 

suitable subsequence and relabelling). By Proposition 2.4 we may further assume 
that (x°)~=, satisfies an upper p-estimate. Hence we obtain the following 

factorization of the formal identity 1 : lp ~ l~ just as in the proof of Corollary 1.6: 

w T S 

lp ~X >Y >l~. 

Dualizing, we obtain the following factorization of the formal identity I:  1~-~ lp. : 

I1 ~>l~ S * > y .  T ' ) X  , w" ip, ' 

where l ip  + 1/p' = 1 and t : 1,--~ l* is the natural inclusion of l, in its second dual. 

Let (e°)~_, denote the unit vector basis of lp (1 <= p =< o~). Since Y* is reflexive it 

follows that (S*t(e.))~=, admits a weakly convergent subsequence. Moreover, 

W * T * S * L ( e . ) =  e. and so (S* t ( e . ) f .  , contains no norm convergent subse- 

quence. Hence there exists x in Y* such that ( S * ( G ) - x ) ~  , contains a weakly 

null subsequence which is bounded away from zero. It follows from the 

Lindenstrauss duality formulae that Y* is q'-smooth, where 1/q + 1/q '=  1. By 

Propositions 2.4 and 2.5 there exists a subsequence (e.~)~ , such that ( S * t ( e . k ) -  

x)~=, satisfies an upper q'-estimate. Let y~ = S * t ( e , k ) - x  and let ~ : lq,---~ Y* be 

defined by ~b(ek)---yk (k => 1) with extension by linearity. Now W*T*(yk) = 

e,~ - W * T * ( x ) ;  since (yk)~ . is weakly null it follows that W * T * ( x )  = 0. Let the 

operator ~b : Ip,---~ lp, be defined by 4,(ej) = 0 for all j ~ {nk : k _-> l} and ~b(e,~) = ek 

for all k -> 1. It is now readily verified that d~W* T*~b is the formal identity from 

l'q into l~. The statement of the theorem follows by dualizing once more. 

The proof of Theorem 2.1 contains the proof of the following proposition. 

PROPOSITION 2.6. Suppose that T : X--~ Y is a non-compact operator. 

(a) I f  X is a p-smooth Banach space then the formal identity I : Ip ~ L admits 

the following factorization : 

ip U ) X  T V , Y  )L. 

(b) I f  Y is a q-convex Banach space then the formal identity I : l, --> lq admits the 

following factorization : 

II U)X** v..> y V ) lq. 
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Using the full force of Proposition 1.3 one can prove versions of Theorem 2.1 

and Proposition 2.6 which guarantee the existence of simultaneous factorizations 

through finite collections of non-compact operators: we state without proof one 

such result. 

PROPOSITION 2.7. Suppose that X is p-smooth, that Y I , . . . ,  Y,  are q-convex, 

and that T~ : X ~ Y, are non-compact operators (1 <= i <-_ n ). There exist operators 

U : lp ---> X and V~ : Y~ --> lq together with the following factorizations of the formal 

identity 1 : Ip ~ lq : 

lp U T V 
) X  ' ) Y ,  ' ) lq .  

For the remainder of this article the term Hilbert space will be used to refer 

only to an infinite dimensional Hilbert space, and the results will be invalid 

without this provision. Of special interest is the case p = q = 2 in Theorem 2.1, 

which has the following consequence. 

COROLLARY 2.8. Suppose that X is 2-smooth, that Y is 2-convex, and that 

T : X ~ Y is non-compact. T,~en the range of T contains an isomorphic copy of 

Hilbert space which is complemented in Y. 

PROOF. Theorem 2.1 asserts the existence of the following factorization of 

the identity operator  on 12: 

O T V 

I~ ~ X ~ Y ~ 12. 

It is now easily seen that U V T  is a projection on X whose range is the range of 

U and that T U V  is a projection on Y whose range is the range of TU. 

Moreover,  the ranges of botlh these projections are isomorphic to 12. 

The next theorem is simply an important special case of the previous corollary. 

THEOREM 2.9. Suppose that X is a 2-convex Banach space and that Y is a 

subspace of X which is isomorphic to a Hilbert space. Then Y contains an 

isomorphic copy of l~ which is complemented in X. 

PROOF. There exists a Hilbert space H and an isomorphic embedding 

H ~  Y--~X, where ~ is the inclusion operator.  Since H is 2-smooth the result 

follows from Corollary 2.8. 

PROPOSITION 2.10. Suppose that X is a 2-convex Banach space. The following 

are equivalent: 
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(i) every operator from a type 2 Banach space into X is compact; 

(ii) every operator from a 2-smooth Banach space into X is compact; 

(iii) every operator from a Hilbert space into X is compact; 

(iv) X does not contain a subspace isomorphic to Hilbert space; 

(v) X does not contain a complemented subspace isomorphic to Hilbert space. 

PROOF. Corollary 2.8 and Theorem 2.9 imply the equivalence of (ii), (iii), (iv) 

and (v); (i) implies (ii) is evident. To prove that (iii) implies (i), suppose that Y is 

of type 2 and that T:  Y ~ X  is non-compact. Since X is of cotype 2 it follows 

from a theorem of S. Kwapien (see e.g. [17, Theoreme 1.2]) that T admits the 

following factorization through a Hilbert space H:  

y V~.H V > x ;  

clearly V is non-compact, and so (iii) implies (i). 

Let us recall that an operator T:X---> Y is said to be strictly singular if its 

restriction to any closed infinite dimensional subspace of X fails to be an 

isomorphism; T is said to be strictly co-singular if its composition with any 

infinite rank quotient operator on Y fails to be a quotient operator on X. 

Suppose that (f~,Z,/x) is any measure space with an infinite ~r-field E, that 

2 =< q < o0, and that 2 < p < ~. There is a projection P on Lq(/x) whose range E 

is isomorphic to L, and there is a subspace F of L,(IX) which is isomorphic to Ip. 

The following composition, in which ~b and ~O are isomorphisms and I : 12---> Ip is 

the formal identity operator, gives a non-compact operator from Lq(/x) into 

Lp(IX) which is both strictly singular and strictly cosingular: 

P ,~ I qJ 
Lq(IX ) , e ,12 ) l v , F , Le(IX ). 

Similar operators exist in the range 1 < p < 2, 1 < q =< 2. The following positive 
result calls to mind the familiar fact that every operator from lq into lp is compact 

for q > p. 

PROPOSITION 2.11. Suppose that 1 < p <= 2, that 2 <= q < oo, and that 

T:  Lq (IX)---> Lp (Ix) is non-compact. Then T maps a complemented copy of Hilbert 

space in L, (Ix) onto a complemented copy of Hilbert space in Lp (Ix). In particular, 

every strictly singular or strictly co-singular operator from Lq (Ix) into Lp (tx ) is 
compact. 

PROOF. Lr(Ix) is min(r,2)-smooth and max(r,2)-convex; so the result follows 

at once from the proof of Corollary 2.8. 
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! should like to conclude with some remarks about Theorem 2.9. H. P. 

Rosenthal and A. PeJ'czyfiski proved the result of Theorem 2.9 ([14]) in the case 

X = Lp(0,1) (1 < p <=2); the,./ remarked that their proof would work for any 

Banach space X which is of cotype 2 and which has an unconditional basis. I 

would further remark that their proof works for any space X of cotype 2 which 

has an unconditional finite dimensional decomposition. Since any subspace of a 

quotient space of a 2-convex space is itself 2-convex, which is a consequence of 

the Lindenstrauss duality formulae, it follows that the result of Theorem 2.9 is 

valid for any subspace of a quotient space of L~ (/z) (1 < p <= 2). It is relevant to 

recall at this point the fact (see [1]) that Lp(0,1) contains uncomplemented 

isomorphic copies of Hilbert space for each 1 < p < 2; also relevant is the 

consequence of Maurey's extension theorem ([12]) to the effect that any 

isomorphic copy of Hilbert space in a Banach space of type 2 (and afortiori in a 

2-smooth space) is automatically complemented. 

The example of L~(0,1), which is of cotype 2 and possesses subspaces that are 

isomorphic to a Hilbert space, but none that are complemented, shows that 

Theorem 2.9 does not extend to encompass all spaces of cotype 2. Moreover, the 

Kalton-Peck space Z2, which contains a subspace isomorphic to a Hilbert space 

which has the property that the quotient of Z2 by that subspace is also 

isomorphic to a Hilbert space, is super-reflexive but does not contain any 

complemented isomorphic copy of Hilbert space (see [6]). 
Finally, I should like to thank Nigel Kalton for helpful discussion and for 

drawing various references to my notice. I am grateful to the referee for pointing 

out an error in the original proof of Lemma 1.2 and for giving the correct proof. I 

should also like to thank the mathematics faculty at the University of Missouri - -  

Columbia for their hospitality. 
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